This introduction to Atomic and Molecular Physics explains how our present model of atoms and molecules has been developed over the last two centuries, both by many experimental discoveries and, from the theoretical side, by the introduction of quantum physics to the adequate description of micro-particles. It illustrates the wave model of particles by many examples and shows the limits of classical description. The interaction of electromagnetic radiation with atoms and molecules and its potential for spectroscopy is outlined in great detail and, in particular, lasers as modern spectroscopic tools are discussed thoroughly. Many examples and problems with solutions are offered to encourage readers to actively participate in applying and adapting the fundamental physics presented in this textbook to specific situations.
Thứ Hai, 20 tháng 4, 2015
Atoms, Molecules and Photons
Thứ Bảy, 21 tháng 2, 2015
Fibre Optic Communication
The book gives an in-depth description of the key devices of current and next generation fibre optic communication networks. In particular, the book covers devices such as semiconductor lasers, optical amplifiers, modulators, wavelength filters, and detectors but the relevant properties of optical fibres as well. The presentations include the physical principles underlying the various devices, the technologies used for the realization of the different devices, typical performance characteristics and limitations, and development trends towards more advanced components are also illustrated. Thus the scope of the book spans relevant principles, state-of-the-art implementations, the status of current research and expected future components.
Thứ Ba, 10 tháng 2, 2015
Semiconductor Physics
This well-established monograph, updated and now in its ninth edition, deals mainly with electron transport in, and optical properties of semiconductors. It includes lasers, e.g. the quantum cascade laser, quantum processes such as the quantum Hall effect, quantum dots, fullerenes, carbon nanotubes, molecular electronics, the nitrides, and many other recent discoveries in the field. New diagrams and tables provide a comprehensive source of materials data. Selected problems help readers to consolidate their knowledge and invite teachers to use this text for graduate courses on semiconductor physics, solid state physics, and physical electronics.
Thứ Tư, 28 tháng 1, 2015
Lasers
‘Lasers’ are active ingredients of our modern life, but they are inconspicuous as they often go unnoticed. This intuitive introductory guide will tell you all you want to know about laser technologies in very diverse fields from nuclear and particle physics to medicine, astronomy and ultra-precise metrology. The book is coherently focused on fundamentals, and is aimed to stimulate intuition about present and future applications, while unveiling the halo of myths around lasers. Written by reputable laser experts who think that science should be entertaining, this useful reference relies on simple analogies and illustrations rather than complex mathematics, and will be suitable for students and end-users of laser technologies, including novices.
Chủ Nhật, 11 tháng 1, 2015
Essential Quantum Physics
This is a first course on quantum mechanics and describes simple applications to physical phenomena that are of immediate and everyday interest. The first five chapters introduce the fundamentals of quantum mechanics and are followed by a quiz so readers can test themselves. The remaining chapters describe applications, including the physics of lasers, molecular binding, simple properties of crystalline solids arising from their band structure, and the operation of junction transistors. This new expanded edition now includes a chapter on the theory of spin and its application to magnetic resonance imaging, as well as a description of the WKB approximation and its application to alpha decay. Ideal either as a course text or a self-study text, the book contains nearly 100 exercises and hints to their solution.
Thứ Bảy, 3 tháng 1, 2015
Progress in Optics, Volume 49
In the thirty-seven years that have gone by since the first volume of Progress in Optics was published, optics has become one of the most dynamic fields of science. At the time of inception of this series, the first lasers were only just becoming operational, holography was in its infancy, subjects such as fiber optics, integrated optics and optoelectronics did not exist and quantum optics was the domain of only a few physicists. The term photonics had not yet been coined. Today these fields are flourishing and have become areas of specialisation for many science and engineering students and numerous research workers and engineers throughout the world. Some of the advances in these fields have been recognized by awarding Nobel prizes to seven physicists in the last twenty years. The volumes in this series which have appeared up to now contain nearly 190 review articles by distinguished research workers, which have become permanent records for many important developments. They have helped optical scientists and optical engineers to stay abreast of their fields. There is no sign that developments in optics are slowing down or becoming less interesting.